

Petrochemical Process Engineering

Description

Introduction

This course provides an in-depth understanding of petrochemical process engineering, covering the conversion of hydrocarbons into valuable petrochemicals. Participants will explore refining, cracking, and polymerization processes, as well as sustainable and efficient practices in petrochemical production.

Objectives

- Understand the fundamentals of petrochemical process engineering and hydrocarbon chemistry.
- Learn about key petrochemical processes, including cracking, reforming, and polymerization.
- Develop skills in optimizing process efficiency and controlling product quality.
- Explore sustainability practices and emerging technologies in petrochemical production.
- Analyze future trends in feedstock diversification and green process engineering.

Who Should Attend?

This course is suitable for:

- Process engineers, chemical engineers, and plant managers in petrochemicals.
- Environmental specialists focused on sustainable petrochemical production.
- Project managers and R&D scientists in refining and petrochemical industries.
- Recent graduates in chemical engineering, industrial chemistry, or energy.

Course Outline

Day 1: Fundamentals of Petrochemical Processes

- Introduction to Petrochemical Process Engineering
 - Overview of the petrochemical industry and major products
 - o Importance of hydrocarbons as primary feedstocks in petrochemical production
- Chemical Properties of Hydrocarbons and Feedstock Selection
 - o Types of hydrocarbons used in petrochemicals: alkanes, alkenes, aromatics
 - Criteria for selecting feedstocks and impact on process efficiency
- Petroleum Refining Basics
 - o Overview of primary refining processes: distillation, desalting, and blending
 - o Role of refining in producing petrochemical feedstocks like naphtha and LPG

Day 2: Key Petrochemical Production Processes

- Cracking Processes: Steam Cracking and Catalytic Cracking
 - o Overview of steam cracking for ethylene, propylene, and butadiene production

Catalytic cracking for converting heavy fractions into lighter hydrocarbons

• Reforming and Aromatic Production

- o Techniques for catalytic reforming to produce benzene, toluene, and xylenes
- o Overview of aromatic recovery, separation, and purification

Polymerization and Polymer Production

- o Processes for producing polymers: polyethylene, polypropylene, and polystyrene
- o Understanding polymerization techniques: addition, condensation, and copolymerization

Day 3: Process Optimization and Product Quality Control

Process Optimization Techniques

- Techniques for optimizing reactor conditions, catalyst usage, and energy efficiency
- o Role of heat integration, recycling, and process control in optimization

• Quality Control in Petrochemical Production

- o Techniques for ensuring product purity, composition, and consistency
- o Role of sampling, testing, and statistical process control in quality management

• Catalysts in Petrochemical Processes

- o Importance of catalysts in enhancing reaction efficiency and selectivity
- o Techniques for catalyst regeneration, selection, and performance monitoring

Day 4: Environmental Impact and Sustainable Petrochemical Engineering

• Environmental Management in Petrochemical Plants

- o Techniques for managing emissions, waste, and water usage
- Overview of environmental regulations and compliance standards

• Sustainable Process Engineering

- o Techniques for reducing carbon footprint and implementing cleaner technologies
- o Role of recycling, bioplastics, and biodegradable polymers in sustainability

Advanced Control Systems and Automation

- o Role of automation and process control systems in improving efficiency and safety
- o Techniques for using AI, machine learning, and real-time monitoring in process control

Day 5: Case Studies and Future Trends in Petrochemical Engineering

Case Studies in Petrochemical Process Optimization

- Analysis of successful optimization projects in petrochemical plants
- Lessons learned in process efficiency, cost reduction, and product quality

• Future Trends in Petrochemical Engineering

- o Trends in feedstock diversification: bio-based feedstocks, COâ?? utilization
- o Role of green chemistry, circular economy, and digital transformation

• Final Project: Process Optimization Plan for a Hypothetical Plant

 Participants develop a process optimization plan for a hypothetical petrochemical plant, including feedstock selection, process adjustments, and sustainability strategies

• Preparing for Future Advances in Petrochemical Process Engineering

- o Techniques for adapting to regulatory changes and technological advancements
- o Role of continuous innovation and training in maintaining competitiveness